If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-18=0
a = 5; b = 4; c = -18;
Δ = b2-4ac
Δ = 42-4·5·(-18)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{94}}{2*5}=\frac{-4-2\sqrt{94}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{94}}{2*5}=\frac{-4+2\sqrt{94}}{10} $
| (8a-6)=26 | | 50+10m=20m | | 20=35-4(-1-2w) | | -(3x/4)=-7 | | 1/7w+2=4 | | 3/4z-6=0 | | c/6=8 | | c/2=12 | | 46=4-6c | | -5d-4=1 | | 5x+4x-1=180 | | -9t+8=3 | | 8a-6(1-12)=-126 | | (4-2z)/3=3/4-5z/6 | | 18x=1.08 | | 1.08x=18 | | –18t^2=98 | | 3(x+1)-3=8(x+6) | | 6x-4=3x+54 | | 3x-34+2x=55 | | 4/3x=11/5 | | 5x^2-113=0 | | 8-(×-3)=4(x+9) | | 17z=19 | | 34+6x=55 | | 34+2x-3x=55 | | B-2=8b-2 | | Y+6=3y+12 | | 1/4x+13=1/3x+7 | | x-3x=55 | | 9(m+2)=-6(m | | A=55-3b |